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3
Point Processes: Definition

and Measures

The famous French mathemati-
cianSiméon Denis Poisson (1781–
1840) developed the fundamental
probability distribution that bears
his name; its applications are legion
in a broad variety of fields.

Together with Major Greenwood,
the Scottish engineerGeorge Udny
Yule (1871–1951)conceived an im-
portant generalization of the Poisson
distribution in which the rate itself
becomes a random variable.
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3.1 POINT PROCESSES

Some random phenomena occur at discrete times or locations, with the individual
events largely identical. Examples include the events of a radioactive decay process
(Sec. 2.5.4), vehicles passing a certain location on a road (Fig. 1.2), the arrival of
information packets at a node of a computer communication network (Chapter 13), the
occurrence of action potentials in a neural preparation (Chapter 5), and the occurrences
of QRS complexes in the electrocardiogram (Sec. 12.2.2).

In all of these cases, the set of times at which the events occur comprises the salient
characteristics of the process. The details of the events themselves are less important,
inasmuch as one event closely resembles another. Astochastic point process, often
abbreviated aspoint process, is a mathematical construct that represents these events
as random points in a space. We use the terms “event” and “point” interchangeably.

Point-process theory grew out of studies in a number of fields: population pro-
cesses, cosmic-ray showers, component durability, and queueing problems in com-
munications engineering. The theory of point processes took shape as a discipline
in the 1920s, and the literature in this area grew rapidly in the following decades
(Lubberger, 1925, 1927; Lotka, 1939; Campbell, 1939; Fréchet, 1940; Palm, 1943;
Feller, 1948; Wold, 1948, 1949; Bartlett, 1955; Moyal, 1962). Writing in German, the
Swedish mathematician Palm (1943) coined the termPunktprozesse: “point process.”
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REPRESENTATIONS 51

A comprehensive bibliography detailing some of the early landmarks of point-process
theory and analysis, in the general context of stochastic processes, is available (Wold,
1965). A concise early history of the field appears in Daley & Vere-Jones (1988,
Chapter 1).

Many modern books on the topic adopt a rigorous and abstract approach (Brillinger,
1981; Leadbetter, Lindgren & Rootzen, 1983; Daley & Vere-Jones, 1988; Kingman,
1993; Reiss, 1993; Baccelli & Brémaud, 2003), which has the merit of providing
a great deal of generality. Other books on point processes are more didactic and
applications oriented (Parzen, 1962; Cox, 1962; Cox & Lewis, 1966; Feller, 1971;
Lewis, 1972; Srinivasan, 1974; Saleh, 1978; Cox & Isham, 1980; Snyder & Miller,
1991), offering specific examples useful in the physical and biological sciences. We
adopt a rather informal approach to point processes, and concentrate particularly on
those that exhibit fractal characteristics.

Some point processes depend on space as well as time; lightning strikes, for exam-
ple, deliver more electrical activity to some areas than to others. However, we confine
the treatment provided here to one-dimensional point processes; other dimensions, if
present, are not incorporated into the model.

Since a variety of time variables exist, we adopt the following conventions: (1)
lowercase roman italic letters (generallyt) refer to absolute time, measured with re-
spect to an origin that does not depend on the point process under study; (2) uppercase
roman italic letters (generallyT ) refer to a duration over which events are analyzed —
again, the duration does not depend on the point process under study and the analysis
need not begin at the origin. Finally, the symbolτ generally represents the times
between events.

3.2 REPRESENTATIONS

Figure 3.1 presents several representations useful in the analysis of point processes
(Teich, Heneghan, Lowen & Turcott, 1996). Panel a) demonstrates a realization
of a point process as a series of impulses occurring at specified timestn. Since
these impulses have vanishing width, they are most rigorously defined in terms of
the derivative of a well-defined counting processN(t) [panel b)], a monotonically
increasing function oft, which starts at the origin and augments by unity when an
event occurs. Accordingly, we write the point process itself asdN(t), to emphasize
its strict definition within the context of an integral. The point-process representation
thus belongs to the family of generalized functions (Bracewell, 1986).

The set ofevent times{tn}, or equivalently thesequence of interevent inter-
vals {τn} (together witht0), whereτn = tn+1 − tn, completely describe the point
process.1 Furthermore, thesequence of countsdepicted in Fig. 3.1c) also contains
much information about the process. Here we divide the time axis into equally spaced
contiguous counting durations ofT sec to produce a sequence of counts{Zk(T )},

1 To remove ambiguity, we defineN(t) as a right-continuous process, so thatN(tn) = n.
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Fig. 3.1 Representations of a point process. (a) A sequence of idealized impulses, occurring
at timestn, represents the events, and form a stochastic point processdN(t). We also show
the interevent intervalsτn = tn+1 − tn. For convenience of analysis, several alternative
representations of the point process appear. (b) The counting processN(t) begins at a value of
zero att = 0. At every event occurrence the value ofN(t) augments by unity. (c) The sequence
of counts{Zk(T )}, a discrete-time nonnegative integer-valued stochastic process, derives from
the point process by recording the number of events in successive counting durations of length
T .

whereZk(T ) = N [(k+1)T ]−N(kT ) denotes the number of events in thekth dura-
tion. As illustrated in panel d), this sequence forms a discrete-time random process of
nonnegative integers. In general, forming the sequence of counts loses information,
although for an orderly point process (see below) decreasing the size of the counting
durationT reduces the loss to an arbitrarily small value. An attractive feature of
this representation lies in the fact that it preserves the correspondence between the
discrete time axis of the counting process{Zk(T )} and the absolute “real” time axis
of the underlying point process. Within the process of counts{Zk(T )}, the elements
Zk(T ) andZk+n(T ) refer to the number of counts in durations separated by precisely
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-

6

0 1 2 3 4 5
0

1

2

u
u

u u
u u

COUNT
INDEX k

e) INTERVAL SEQUENCE{τk}

-

6

1 2 3 4 5

u
u

u

u

u

INTERVAL
INDEX k

Fig. 3.1 (continued) (d) The sequence of counts{Zk(T )} depends on a count indexk. The
counting process destroys information because this representation eliminates the precise timing
of events within each counting duration. Correlations in the discrete-time sequence{Zk(T )}
can be readily interpreted in terms of real time. (e) The sequence of interevent intervals{τk}
represents the time between successive events, yielding a discrete-time, positive, real-valued
stochastic process. All information contained in the original point process remains in this
representation, but the discrete-time axis of the sequence of interevent intervals suffers random
distortion relative to the real time axis of the point process.

(n − 1)T sec, so that we can readily associate correlation in the process{Zk(T )}
with correlation in the underlying point processdN(t).

Much as the sequence of counts forms an auxiliary process, so does the sequence
of interevent intervals. Figure 3.1e) presents the intervals{τk} drawn from the point
process in panel a), indexed by interval number. In contrast to the sequence of counts,
this representation preserves all of the information of the point processdN(t), but
eliminates the direct correspondence between absolute time and the index number.
The sequence of intervals therefore affords only rough comparisons with correlations
in the underlying point process, particularly for intervals with a large coefficient of
variation [see Eq. (3.5)].

We restrict ourselves largely toorderly point processes, which essentially means
that no two events occur at the same time, and that events do not localize to any single
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54 POINT PROCESSES: DEFINITION AND MEASURES

time. Formally speaking, in terms of the counting processN(t) we have

lim
ε→0

ε−1 Pr{N(t + ε)−N(t) > 1} = 0 (3.1)

for any timet, which also implies the lack of coincident events (Daley, 1974). We
also generally consider stationary processes; all statistics remain unchanged despite
any shifting of the time axis,

Pr{f [N(s1), N(s2), . . . , N(sk)] < x} =

Pr{f [N(s1 + s), N(s2 + s), . . . , N(sk + s)] < x},
(3.2)

for any arbitrary real-valued functionf(· · ·) with any numberk of arguments and any
offset times. Unless explicitly stated otherwise, all point processes in this book are
orderly and stationary.

For some applications, point processes as defined above do not suffice for all sets
of events; customers arriving at a queue, for example, may require widely different
service times (see Chapter 13). While still strongly localized, the events do not
then resemble each other. In addition to its location, each event then requires a
descriptive mark, such as the service time in this example. A generalization of the
point-process model to amarked point processversion accommodates problems
of this type (Matthes, 1963; Cox & Isham, 1980; Sigman, 1995). All marks in
a marked point process are of the same type (examples of types include integers,
real numbers, vectors, and functions). Including marks adds additional information
(but also complexity) to point-process models. Since most of the point processes
considered in this book do not warrant this level of effort, we largely restrict ourselves
to unmarked point processes.

We now proceed to describe a number of measures that prove useful in the study
of point processes. In general, no one statistic, or even small group of statistics,
suffices to completely characterize a point process; each provides a different view
of the process and highlights different properties. A good description requires many
such views. The statistics fall into three broad classes: those based on the intervals
between events, as displayed in Fig. 3.1e); those based on the counting process, as
shown in Fig. 3.1d); and those based on the point process as a whole, as depicted in
Fig. 3.1a).

3.3 INTERVAL-BASED MEASURES

Conversion of a point processdN(t) into a sequence of intervals between events
{τk} reducesdN(t) to a discrete-time real-valued process, for which a wide variety
of analytical methods exist.
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3.3.1 Marginal statistics

Perhaps the simplest statistics of a point process ignore any dependencies among
event times, and focus on the marginal properties of the interevent intervals{τk}.
These fall into two classes.

The first includes theprobability distribution, the survivor function , and the
probability density where this derivative exists:

distribution Pτ (t) = Pr{τ ≤ t}
survivor Sτ (t) = Pr{τ > t} = 1− Pτ (t)
density pτ (t) = dPτ (t)/dt.

(3.3)

For a well-defined point process, we require thatPτ (t) = pτ (t) = 0 for t < 0.
The second class comprises themomentsE[τn] and the statistics derived there-

from, such as:

variance Var[τ ] = E[τ2]− E2[τ ]

standard deviation στ =
√

Var[τ ]
skewness E[(τ − E[τ ])3]/σ3

τ

kurtosis E[(τ − E[τ ])4]/σ4
τ − 3,

(3.4)

where these moments exist.2 The intervalcoefficient of variation Cτ , a commonly
used measure of the relative dispersion (relative width) of the intervals, is defined as

Cτ ≡ στ/E[τ ]. (3.5)

As with all random variables, thecharacteristic function φτ (ω), defined as3

φτ (ω) ≡
∫ ∞

0

pτ (t) e−iωt dt, (3.6)

forms a compact representation of the moments. In general we have

in
dn

dωn φτ (ω)ω=0 = E[τn] (3.7)

2 Several definitions for skewness exist (such as the difference between the mean and the median, all divided
by the standard deviation), and some authors define kurtosis without the “3” subtracted. All definitions
in general use have their merits, and no clear winner emerges. However, we choose to make use of the
particular forms provided above for three reasons. First, the skewness and kurtosis provided in Eq. (3.4) are
given by normalized versions of the third and fourth cumulants or semi-invariants, respectively. Second,
these versions prove most analytically tractable. And finally, both of these definitions assume a value of
zero for a Gaussian random variable.
3 Some define the characteristic function with the argument of the exponentialiωt rather than−iωt.
Since bothi and−i form equally valid square roots of−1, it is convention, rather than mathematics, that
determines the choice. We employ the expression shown in Eq. (3.6) because it leads to simpler results.

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



56 POINT PROCESSES: DEFINITION AND MEASURES

for the moments, and

in
dn

dωn ln
[
φτ (ω)

]
ω=0

= Cn (3.8)

for thecumulants or semi-invariants Cn. The moments and cumulants determine
each other, and in particular we have

E[τ ] = C1

E[τ2] = C2 + C2
1

E[τ3] = C3 + 3C1C2 + C3
1

E[τ4] = C4 + 4C1C3 + 3C2
2 + 6C2

1C2 + C4
1

Var[τ ] = C2

skewness = C3/C
3/2
2

kurtosis = C4/C2
2 .

(3.9)

In addition to the interevent-interval statistics, theforward recurrence time also
proves useful. This represents the timeϑ(t) remaining to the next event of a point
process, starting at an arbitrary timet independent of the process. Formally, we have

ϑ(t) = tk − t, where k = N(t) + 1. (3.10)

A simple relation exists between probability distribution functions of the interevent
time and the forward recurrence time (see Prob. 3.8)

Pϑ(s) = Pr{ϑ(t) ≤ s} =
1

E[τ ]

∫ s

0

[1− Pτ (x)] dx, (3.11)

which yields the statistics ofϑ(t) through Eqs. (3.3) and (3.4). In particular, taking
the derivative of Eq. (3.11) yields

pϑ(s) = [1− Pτ (s)]/E[τ ]. (3.12)

Thus, a normalized version of the interevent-interval survivor function provides the
recurrence-time probability density.

While the interevent-interval probability distribution and survivor function exist
for all point processes, some moments may not; in particular, for a probability density
function that decays ast−α for larget, momentsE[τn] for n ≥ α− 1 will not exist.
For example, the density function

pτ (t) =
√

t0/π t−3/2 exp(−t0/t), t > 0, (3.13)

with t0 a fixed positive parameter, has infinite momentsE[τn] for all positive integers
n (Feller, 1971) (see Prob. 3.6).

Densities such as these belong to the family ofheavy-tailed distributions, for
which

lim
t→∞

Sτ (t + t1)
Sτ (t)

= 1, t1 ≥ 0, (3.14)
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for any fixed, finite timet, where againSτ (t) = 1 − Pτ (t) is the interval survivor
function. Subexponential distributions, introduced by Chistyakov (1964), form
an important subclass of heavy-tailed distributions (see, for example, Embrechts,
Kl üppelberg & Mikosch, 1997; Sigman, 1999; Greiner, Jobmann & Klüppelberg,
1999). These distributions have survivor functionsSτ (t) that obey

lim
t→∞

eεt Sτ (t) = ∞, ε > 0, (3.15)

so that the tail of the survivor function tends to zero more slowly than any exponential
function e−εt. Examples of subexponential distributions include the Pareto and its
variants, the lognormal, and the stretched exponential (Weibull4).

For a particular class of point processes, calledrenewal point processes(see
Sec. 4.2), the values of each interevent interval do not depend on those before or after
it. For this class of point processes only, the marginal statistics described above, and in
particular the probability distribution function alone, determine the entire behavior of
the processes. Generally, however, dependencies do occur among interevent intervals
and this necessitates the use of several statistics for an overview of the sequence of
intervals, and of the point process itself.

3.3.2 Interval autocorrelation

Theinterval autocorrelation Rτ (k), which provides further information about point
processes that do not belong to the renewal point-process family, is defined as

Rτ (k) ≡ E[τnτn+k] . (3.16)

For independent intervals,Rτ (k) = E2[τ ] for k 6= 0, confirming that the autocorre-
lation then provides no additional information.

A normalized version of this measure proves useful in many cases. Subtracting the
value returned for independent intervals,E2[τ ] , and dividing by the interval variance,
Var[τ ], yields theinterval serial correlation coefficient

%τ (k) ≡ Rτ (k)− E2[τ ]
Var[τ ]

. (3.17)

By construction,%τ (0) = 1 for any point process. For independent intervals,%τ (k) =
0 for k 6= 0.

Inasmuch as no direct relationship generally exists between the lag variablek
and timet in seconds, these measures, as well as the other interval-based measures
that follow, have limited usefulness. This restriction is relaxed when the mean inter-
val greatly exceeds the interval standard deviation (DeBoer, Karemaker & Strackee,
1984), in which caset ≈ k E[τ ] (see the beginning of Sec. 3.4).

4The Weibull distribution follows the formPτ (t) = 1−exp[−(t/t0)ξ], typically with a shape parameter
0 < ξ < 1 (see Gumbel, 1958, pp. 279, 302); the exponential distribution is recovered forξ = 1. This
distribution possesses finite moments of all orders but is nevertheless heavy-tailed because the survivor
function decays more slowly than any exponential.
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3.3.3 Interval spectrum

Fourier transforming the autocorrelation in Eq. (3.16) yields theinterval-based spec-
trum Sτ (f):

Sτ (f) =
∑

k

Rτ(k) e−i2πkf , (3.18)

wheref is the (dimensionless) frequency with units of cycles per number of intervals.
For independent intervals,Sτ (f) = Var[τ ] for all f 6= 0. Again, the independent
variablef has no simple connection with its conventional counterpart (the frequency
f in Hz), so this measure principally finds use in processes with small deviations from
periodicity. The performance of a normalized version of this statistic is examined in
Sec. 12.3.7.

3.3.4 Interval wavelet variance

A particularly appropriate method for characterizing signals with fractal behavior is
via the use of wavelets (Daubechies, 1992). Fourier analysis, employed in generating
the interval spectrum, decomposes a signal into a series of basis functions, all of
which have different shapes: sinewaves of varying frequency, phase, and amplitude
but identical duration. The basis functions differ in the number of cycles they contain.
Wavelet decomposition, in contrast, employs basis functions that all have the same
shape, and derive from a prototype wavelet by stretching and shifting. As with their
Fourier counterpart, the inversion of wavelet transforms to return the original signal
proves relatively simple.

This self-affine basis set makes wavelets well suited for analyzing signals that
contains statistical copies of themselves; signals that exhibit fractal characteristics in
time fall into this category. Wavelet-based methods for characterizing fractal signals
yield estimates superior to those obtained by many other methods (Thurner et al.,
1997; Abry, Flandrin, Taqqu & Veitch, 2000, 2003, see also Chapter 12), and wavelet
analysis also enjoys the salutary property of removing nonstationarities from the
signal under study (Teich et al., 1996; Abry & Flandrin, 1996; Arneodo, Grasseau &
Holschneider, 1988).

The wavelet transform of a sequence of interevent intervals takes the form
(Daubechies, 1992; Aldroubi & Unser, 1996; Akay, 1997; Abry et al., 2003)

Wψ,τ (k, l) =
∑

n

2−k/2 ψ(2−kn− l) τn, (3.19)

where the continuous-time wavelet functionψ(x) satisfies a number of admissibility
criteria (Daubechies, 1992). We consider theinterval wavelet-transform variance
in Eq. (3.19), since the transform itself is a random variable. As a result of one of the
admissibility criteria, wavelet transforms have zero mean, so that

Var[Wψ,τ (k, l)]

= E[W 2
ψ,τ (k, l)]
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= E

[∑
n

∑
m

2−k ψ(2−kn− l)ψ(2−km− l) τm τn

]

= 2−k
∑

n

∑
m

ψ(2−kn− l)ψ(2−km− l)Rτ (m− n). (3.20)

The performance of a normalized version of this measure, defined as

Aτ (k) ≡ Var[Wψ,τ (k, l)]
Var[τ ]

, (3.21)

is examined in Sec. 12.3.6.
For stationary point processes, the wavelet variance does not depend on the position

indexl, but only on the scale variablek. Under these conditions, the interval wavelet
variance is directly related to the interval spectrum (see Sec. 3.3.3) via an integral
transform (Heneghan, Lowen & Teich, 1999). Knowledge of one of these measures
is thus equivalent to knowledge of the other. The wavelet variance exhibits the same
nonlinear relationship between the lag variablek and conventional time as observed
above for several other measures.

3.3.5 Rescaled range analysis

Harold Hurst studied the water flow patterns of the river Nile, and discovered the
presence of long-term fluctuations in the yearly flood levels.5 He observed that years
with greater-than-average flow tended to cluster together, as did years with lower-
than-average flow, but that no characteristic cluster size appeared to exist. Hurst
(1951) developedrescaled range analysis(R/S analysis) to quantify this effect,
and this statistic became the first robust method for characterizing fractal behavior
in discrete-time sequences.6 The rescaled range statistic provides information about
dependencies among interevent intervals (or other sequences) in a form fundamentally
different from that obtained by the interval autocorrelationRτ (k).

One algorithm for calculating the rescaled range proceeds as follows. Begin by
selecting a set ofk interevent intervals that start with the first available interval. From
this set, estimate the mean̂E[τ ] and (biased) standard deviation

√
k − 1

k
V̂ar[τ ] . (3.22)

Next, subtract the estimated mean, divide by the biased standard deviation, and con-
struct a running sum of this rescaled process. Now generate the rescaled range by

5 Hurst (1956) and Hurst, Black & Simaika (1965) studied the water flow through other rivers as well;
they also examined variations in other natural time series such as rainfall, temperature, pressure, tree-ring
thickness, and sunspot numbers.
6 The unexpected clustering results, together with the seeminglyad hoccharacter of the rescaled range
statistic, led to a lack of acceptance of Hurst’s work that lasted until he was in his seventies (Mandelbrot,
1982, pp. 396–398). A photograph of Hurst appears at the beginning of Chapter 12 and a biographical
sketch is provided by Mandelbrot (1982, Chapter 40).
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60 POINT PROCESSES: DEFINITION AND MEASURES

subtracting the minimum value that the sum attains from its maximum. Next, repeat
this procedure for all possible contiguous blocks ofk values within the entire data set,
and average these values together to yield the rescaled-range estimateÛ(k). Finally,
repeat this procedure for a variety of lagsk. Figure 3.2 provides pseudocode for this
algorithm, and Fig.3.3 presents a schematic graphical calculation.

For independent intervals, we have

U(k) ≈
√

k, (3.23)

where the exact relationship depends on the distribution of the{τn} (see Prob. 3.7).
While this measure now enjoys broad popularity for the study of processes that

exhibit long-term correlation or large moments (Hurst, 1951; Feller, 1951; Hurst,
1956; Hurst et al., 1965; Mandelbrot, 1982; Mandelbrot & Wallis, 1969c,b; Schepers,
van Beek & Bassingthwaighte, 1992), it suffers from large systematic errors for
some sequences (Beran, 1994; Bassingthwaighte & Raymond, 1994; Caccia, Percival,
Cannon, Raymond & Bassingthwaighte, 1997). Nevertheless, it can prove useful in
some cases since it robustly handles data sets with infinite variance (Mandelbrot,
2001, Chapter 5, pp. 155–171). In Sec. 12.3.4 we examine the performance of a
normalized form of this the rescaled range statistic,

U2(k) ≡ U2(k)/k . (3.24)

Calculate R/S from discrete-time sequence {xn} of length M :
set k = 2
while M/k large /* typically require M/k ≥ 10 */

set m = 0
while m + k − 1 ≤ M

estimate mean Ê[x] =
∑m+k−1

n=m
xn/k

estimate biased std. dev. σ̂2
x =

∑m+k−1

n=m

(
xn − Ê[x]

)2 /
k

generate normalized sequence: yn =
(
xn − Ê[x]

)/
σ̂x

generate summed sequence: zn = zn−1 + yn; z1 = y1

find minimum and maximum values:
zmin = min(zn), m ≤ n < m + k
zmax = max(zn), m ≤ n < m + k

find the difference between them: U(k, m) = zmax − zmin

increment starting index: m → m + 1
/* m → m + k faster, almost as accurate */

end while
average all values of U(k, m) to yield Û(k)

report k and Û(k)
increase block size k /* typically k → 2k */

end while

Fig. 3.2 Rescaled-range analysis: Pseudocode.
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Fig. 3.3 Top row: a summed series and its approximation by a linear function through its
first and last values (left column). The difference between the summed series and the linear
function yields a range (middle column). After rescaling by the (biased) sample standard
deviation, this single range value forms the mean rescaled range (right column). Middle row:
the process repeats with the same summed series divided into four subseries, each with its own
linear function, as well as range and standard deviation. Their average forms the mean rescaled
range. Bottom row: the same calculation for sixteen subseries.

3.3.6 Detrended fluctuation analysis

Detrended fluctuation analysisoffers yet another method for analyzing dependen-
cies among interevent intervals (Peng et al., 1995). The algorithm for calculating the
detrended fluctuation begins by constructing a running sum of the interval sequence
over all indices. Next divide the summed series into blocks of lengthk and perform
a least-squares fit on each of the data blocks, providing the trends for the individual
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blocks. Now detrend the sequence by subtracting the local trend in each block. Next,
sum the squares of the detrended fluctuations, divide byk, and take the square root
to obtain the detrended fluctuation estimateŶ (k). Finally, repeat this procedure for
a variety of lagsk. Figure 3.4 provides pseudocode for this algorithm, and Fig.3.5
presents a sample graphical calculation.

Like U(k), for independent intervalsY (k) varies as
√

k for largek (see Prob. 3.7);
more precisely,

Y (k) = στ

√
(k2 − 4)/15 k (3.25)

for all k > 2 (see Sec. A.1.1). Except for the special case of Gaussian-distributed
sequences, detrended fluctuation analysis exhibits significant bias and variance (Taqqu
& Teverovsky, 1998). Section 12.3.5 reports the performance of a normalized form
of the detrended fluctuation statistic,

Y2(k2) ≡ 15 Y 2(k + 2)
(k + 2) Var[τ ]

. (3.26)

An extension of detrending exists, which involves the removal of higher-order
polynomial trends rather than merely linear ones (Hu, Ivanov, Chen, Carpena &
Stanley, 2001). Like the use of wavelets with several vanishing moments, this renders
detrended fluctuation analysis insensitive to such trends in the data. Much as the
interval wavelet variance is directly related to the interval spectrum, as discussed in
Sec. 3.3.4, an analytical link exists between detrended fluctuation analysis and the
interval spectrum (Heneghan & McDarby, 2000). Similar relations also connect the
normalized count-based variance, the normalized count-based wavelet variance, and
the conventional spectrum, as shown later in this chapter.

Calculate detrended fluctuation analysis
from discrete-time sequence {xn} of length M :

generate summed sequence: yn = yn−1 + xn; y1 = x1

set k = 3 /* or set k = 4 */
while M/k large /* typically require M/k ≥ 10 */

set m = 0
while m + k − 1 ≤ M

in this mth block of k values in {yn},
find least-squares linear fit zn = an + b

to yn over the range mk < n ≤ (m + 1)k
subtract the fit from the summed sequence: wn = yn − zn

sum the squares of the remainder: qm =
∑(m+1)k

n=mk+1
w2

n

normalize the sum: vm = qm/k
take the square root: Y (k, m) =

√
vm

increment block index: m → m + 1
end while
average all values of Y (k, m) to yield Ŷ (k)

report k and Ŷ (k)
increase block size k /* typically k → 2k */

end while

Fig. 3.4 Detrended fluctuation analysis: Pseudocode.
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Fig. 3.5 Top row: a summed series and its least-squares fit by a linear function (left column).
The difference between the summed series and the linear function (middle column). The sample
standard deviation of this detrended series (right column). Middle row: the process repeats
with the same summed series divided into four subseries, each with its own linear function as
well as detrended series and sample standard deviation. Bottom row: the same calculation for
sixteen subseries.

3.4 COUNT-BASED MEASURES

Count-based measures form the second broad class of point-process statistics, and
derive from the sequence of counts{Zk(T )} shown in Fig. 3.1d). Perhaps the ear-
liest application of a stochasticcountingprocess was offered in the domain of legal
decisions, by Poisson himself in 1837. Other early applications were Seidel’s (1876)
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analysis of thunderstorms, blood-cell counting via microscopy carried out by Abbe
(1878), Rutherford & Geiger’s (1910) famousα-particle counting experiments (see
also Bateman, 1910), and the well-known study of accident proneness conducted by
Greenwood & Yule (1920). Researchers sometimes favor count-based measures be-
cause the information they provide corresponds to the real time of the point process.
Moreover, counting measures can be used for systems that intrinsically involve inte-
gration. Count-number statistics also provide the only systematic analysis approach
available for spaces of dimension greater than one.

Rate-based measures form a closely related set, where thesample rateλk(T ) is
a normalized version of the sequence of counts:

λk(T ) = Zk(T )/T. (3.27)

A variant of the counting procedure, calledgeneralized rates, assigns fractional
counts, depending on the manner in which an interevent interval spans different count-
ing durations (Papoulis, 1991). Referring to Fig. 3.1c), for example, an interevent
interval begins just before timet = 2T and extends to just beforet = 5T . Applying
the generalized rate method for this case, one would setλ2(T ) = λ3(T ) ≈ 0.3/T .
Similarly, the duration fromt = T to t = 2T , with sample rate denotedλ1(T ), would
contain a small portion of the long interval discussed above (perhaps a tenth of it),
plus about half of the interval that spans the dividert = T , plus the entire interval
that spans the two events located within the duration fromt = T to t = 2T . Thus,
one would setλ1(T ) ≈ (0.1 + 0.5 + 1)/T = 1.6/T using this method.

The generalized rates yield somewhat smoother estimates of the rate by reducing
the quantization noise inherent in constructing the sequence of counts; they find
their principal use in point processes for which the mean interval greatly exceeds the
interval standard deviation, such as in heartbeat sequences (DeBoer et al., 1984). A
relationship between count- and interval-based measures can be formulated in this
special case, as indicated in connection with the second-order interval-based measures
in Secs. 3.3.2 and 3.3.3. Since the events follow a relatively regular spacing for these
point processes, results from one domain (count- or interval-based) can be readily
translated into those in the other domain via the relationt ≈ k E[τ ] (DeBoer et al.,
1984).

While some measures, such as the spectrum, appear extensively in the literature
as both interval- and count-based versions, others typically do not, despite being
theoretically possible. For example, both rescaled range and detrended fluctuation
analyses could serve as count-based measures, but published studies have traditionally
not included such analyses in count-based form.

3.4.1 Marginal statistics

As with interval-based measures, we begin with count-based statistics that ignore
any dependencies among counts, focusing on the marginal properties of the counts
{Zk(T )} instead. These again fall into two classes. Thecounting distribution (or
probability mass function), which is akin to the probability density function for

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



COUNT-BASED MEASURES 65

discrete-valued random variables, forms the first:

pZ(n; T ) = Pr{Z(T ) = n}. (3.28)

We employ the shorthand notationpZ(n) where this does not introduce confusion.
If no events occur in a time of durationT , then the time to the next event must exceed

T . These two descriptions of the same outcome must have identical probabilities, so
that (see Prob. 3.4)

Pr{Z(t) = 0} = 1− Pϑ(t) (3.29)

wherePϑ(t) again denotes the forward-recurrence-time probability distribution func-
tion. Combining Eqs. (3.11) and (3.29) yields (see Prob. 3.3)

pτ (t) = E[τ ]
d2

dt2
Pr{Z(t) = 0}, (3.30)

thereby forming a connection between the interval-based and count-based domains.
For processesN(t), and counting timesT for which the number of counts greatly

exceeds unity, the corresponding rateλ(T ) can assume any of a large number of pos-
sible values. In this case, the individual values of the counting distribution forZ(T )
[and therefore forλ(T ) as well] all become small. A continuous approximation for
λ(T ), and its description by a probability density function, then becomes reasonable.

The second class of marginal count-based measures comprises thecount moments
E[Zn(T )], and the statistics derived from them, such as the following:

variance Var[Z] = E[Z2]− E2[Z]
factorial moments E[Z!/(Z − k)!]

skewness E[(Z − E[Z])3]/Var3/2[Z]

kurtosis E[(Z − E[Z])4]/Var2[Z]− 3,

(3.31)

where these moments exist, and where we suppress the explicit reference to the
counting timeT (see Footnote 2 on p. 55). Herek! ≡ k · (k−1) · · · 3 ·2 ·1 represents
the factorial function, and we employ the notational convenience that1/n! ≡ 0 for n
a negative integer.

For renewal point processes, as discussed in Sec. 4.2, the value of each interevent
interval does not depend on those before or after it. However, for general renewal
point processes thecountsequencedoesexhibit dependence. For example, consider
a point process constructed so that the smallest possible interval takes a value larger
than τmin. At a counting time half as large (T = τmin/2), the observation that
Zk−1(T ) = 1 implies thatZk(T ) = 0; otherwise the interval spanningt = kT
would not exceed2T = τmin. The only point process for which the sequence of
counts{Zk(T )} exhibits independence for all counting timesT is the homogeneous
Poisson process described in Sec. 4.1. For all other point processes, dependencies do
occur among counts, necessitating the use of several statistics for an overview of the
sequence of counts.

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



66 POINT PROCESSES: DEFINITION AND MEASURES

3.4.2 Normalized variance

As the counting durationT increases, all of the count moments provided in Eq. (3.31)
increase, suggesting that some manner of normalization might prove useful. The
normalized varianceF (T ) is obtained by dividing the variance by the mean:

F (T ) ≡ Var[Z(T )]
E[Z(T )]

. (3.32)

This quantity appears to have been first devised by Ugo Fano (1947) to characterize
the statistical fluctuations of the number of ions generated by individual fast charged
particles; it therefore garnered the appellation “Fano factor.” It also goes by a num-
ber of other names including “count variance-to-mean ratio,” “dispersion ratio,” and
“index of dispersion” (Cox & Isham, 1980). We prefer the terminology “normalized
variance” for its simplicity and apt description.

Figure 3.6a) displays its construction. In general, the normalized variance is a
function of the counting time. In the limit of small counting timesT , the countZ(T )
generally takes a value of zero, and rarely unity; larger values occur with negligible
frequency. The result then becomes a sequence ofBernoulli trials. Under these
conditions,

Pr{Z(T ) = 1} = pZ(1)

Pr{Z(T ) = 0} = pZ(0) ≈ 1− pZ(1)

Pr{Z(T ) > 1} =
∑
n>1

pZ(n) ≈ 0,
(3.33)

so that (see Prob. 3.2)

lim
T→0

F (T ) = lim
T→0

Var[Z(T )]
E[Z(T )]

= lim
T→0

E[Z2(T )]− E2[Z(T )]
E[Z(T )]

≈ lim
T→0

E[Z(T )]− E2[Z(T )]
E[Z(T )]

= lim
T→0

{
1− E[Z(T )]

}

≈ lim
T→0

[1− pZ(1)] = 1
(3.34)

for any orderly point process. The normalized variance approaches unity, as expected
for a sequence of Bernoulli trials. For the homogeneous Poisson process,F (T ) = 1
for all counting times, as shown in Sec. 4.1.

As an estimator for finite-length data sets, the normalized variance suffers from
bias for sequences of counts that exhibit dependence (Lowen & Teich, 1995; Thurner
et al., 1997), as we demonstrate in Sec. 12.3.2. In contrast, the normalized Haar-
wavelet variance described in the next section does not have this limitation.

3.4.3 Normalized Haar-wavelet variance

In the same way that wavelets can prove useful in characterizing the sequence of
intervals derived from a fractal or fractal-rate point process (see Sec. 3.3.4), they also
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Fig. 3.6 A point process gives rise to a sequence of counts{Zk(T )} by counting the number
of events in each contiguous time durationT . (a) Computing the variance of the number
of counts, and dividing this quantity by the mean number of counts, yields the normalized
varianceF (T ). (b) Computing the variance of thedifferencein the number of counts in
adjacent counting durations, and dividing this quantity by twice the mean number of counts,
yields the normalized Haar-wavelet varianceA(T ).

provide an appropriate method for the analysis of count sequences associated with
such processes.

In terms of the point process, the wavelet transform becomes

Cψ,N (a, b) =
∫

a−1/2 ψ[(t− b)/a] dN(t), (3.35)

where the continuous wavelet transform now applies. We focus on a particular
wavelet, the Haar wavelet (1910), defined by

ψHaar(t) =





1 for 0 ≤ t < 1
2

−1 for 1
2 ≤ t < 1

0 otherwise.
(3.36)
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Equation (3.35) then becomes

CHaar,N (a, b) = a−1/2

∫ b+a/2

b

dN(t)− a−1/2

∫ b+a

b+a/2

dN(t)

= a−1/2
{

[N(b + a/2)−N(b)]

− [N(b + a)−N(b + a/2)]
}

. (3.37)

SettingT = a/2 andk = 2b/a yields

CHaar,N (2T, k) = (2T )−1/2 [Zk(T )− Zk+1(T )] (3.38)

E
[
C2

Haar,N (2T, k)
]

=
E

{
[Zk(T )− Zk+1(T )]2

}

2T
. (3.39)

Dividing by the sample rate yields thenormalized Haar-wavelet varianceA(T ):

A(T ) =
E

[
C2

Haar,N (2T, k)
]

E[λk(T )]

=
E

{
[Zk(T )− Zk+1(T )]2

}

2T

T

E[Zk(T )]

≡ E
{
[Zk(T )− Zk+1(T )]2

}

2E[Zk(T )]
. (3.40)

We schematically illustrate the construction of this quantity from a point process
in Fig. 3.6b). We initially developed this measure for the analysis of action-potential
sequences recorded from the mammalian auditory nerve (Lowen & Teich, 1996a). At
first we called it the “Allan factor” by virtue of its relationship to the Allan variance
(Allan, 1966; Barnes & Allan, 1966), but we prefer the appellation “normalized Haar-
wavelet variance,” which is more descriptive.7

Unlike the normalized variance discussed in Sec. 3.4.2,A(T ) does not suffer from
bias for sequences of counts that exhibit dependence (Abry & Flandrin, 1996; Thurner
et al., 1997), as we demonstrate in Secs. 12.2.3, 12.3.8, and 12.4. In terms of the
normalized variance, we have (Scharf, Meesmann, Boese, Chialvo & Kniffki, 1995):

2F (T )− F (2T ) = 2
Var[Z(T )]
E[Z(T )]

− Var[Z(2T )]
E[Z(2T )]

=
4E[Z2(T )]− 4E2[Z(T )]

2E[Z(T )]

− E{[Zk(T ) + Zk+1(T )]2} − E2{[Zk(T ) + Zk+1(T )]}
2E[Z(T )]

7 Photographsof Haar and Allan appear at the beginnings of Chapters 5 and 12, respectively.
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=
4E[Z2(T )]− 4E2[Z(T )]

2E[Z(T )]

+
−2E[Z2(T )]− 2E[Zk(T )Zk+1(T )] + 4E2[Z(T )]

2E[Z(T )]

=
E{[Zk(T )− Zk+1(T )]2}

2E[Z(T )]

= A(T ). (3.41)

In particular,
lim
T→0

A(T ) = lim
T→0

F (T ) = 1. (3.42)

Furthermore, if the normalized variance increases monotonically, we have

F (2T ) > F (T )
0 > F (T )− F (2T )

F (T ) > F (T ) + F (T )− F (2T )
F (T ) > A(T ), (3.43)

illustrating that the normalized variance always exceeds the normalized Haar-wavelet
variance in this case.

3.4.4 Count autocorrelation

In direct parallel to the sequence of intervals, the autocorrelation of the sequence of
counts provides information about their second-order properties. Thecount auto-
correlation is defined as

RZ(k, T ) ≡ E[Zn(T )Zn+k(T )] . (3.44)

For a sequence of counts that exhibits independence at a counting timeT , we have
RZ(k, T ) = E2[Z(T )] for k 6= 0. In contrast to the interval-based autocorrelation
in Eq. (3.16), in this case a direct relationship exists between the lag variablek and
time t in seconds:k = t/T .

As with the count variance, estimates of this measure suffer from bias, as we
demonstrate in Sec. 12.3.3 using a normalized form of the autocovariance,

R2(k) ≡ RZ(k, T )− E2[Z(T )]
Var[Z(T )]

. (3.45)

A generalized version of the wavelet variance defined by

CHaar,N (2T, k) ≡ E
{

[Zn(T )− Zn+k(T )]2
}

(3.46)

would not suffer from bias, but this quantity has not enjoyed wide use.
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3.4.5 Rate spectrum

Again paralleling results for the sequence of intervals, Fourier transforming the auto-
correlation in Eq. (3.44) yields thecount-based spectrumSZ(f, T ). In practice, the
rate-based spectrum, often simply called therate spectrum, proves more useful:

Sλ(f, T ) = T−2SZ(f, T ) =
1
T

∑

k

RZ(k, T ) e−i2πkfT . (3.47)

This quantity derives from the Fourier transform of the observed sequence of rates,
rather than the sequence of counts, and sinceλk = Zk(T )/T , a factor ofT−2 appears
in Eq. (3.47). Because of this normalization, in the range0 < f ¿ 1/T the rate
spectrumSλ(f, T ) approaches a limiting value that does not depend onT . The
count-based version,SZ(f, T ), does not enjoy this property, and is therefore less
useful.

We examine the performance ofSλ(f, T ) in Secs. 12.3.9 and 12.4. An estimate of
the rate-based spectrum derived from a data set is often referred to as theperiodogram
(this term is also used for an estimate of the interval-based spectrum). One can reduce
the variance of the rate-based periodogram by averaging it over nearby frequencies;
or by partitioning the original point process into blocks of identical length, and then
averaging the individual periodograms thus obtained; or by employing both methods
in tandem.

3.5 OTHER MEASURES

Other measures of a point process exist that do not fall into either the interval-based
or count-based categories. Some of these measures prove problematical in practice,
leading to long computation times, poor statistics, or both; they are, nevertheless, of
interest as theoretical constructs.

3.5.1 Coincidence rate

The coincidence rateG(t) measures the correlation between events as a function of a
specified time delayt, regardless of any intervening events (Kuznetsov & Stratonovich,
1956; Kuznetsov, Stratonovich & Tikhonov, 1965; Cox & Lewis, 1966):

G(t) ≡ lim
ε→0

1
ε2

Pr
{

N(s + ε)−N(s) > 0

andN(s + t + ε)−N(s + t) > 0
}

(3.48)

= E
[
dN(s)

ds

dN(s + t)
ds

]
. (3.49)

For t = 0, the two probabilities coincide in Eq. (3.48), which leads to an infinite
value. It proves most convenient to represent this as a Dirac delta function:
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lim
ε>0
ε→0

∫ ε

−ε

G(t) dt = lim
ε>0
ε→0

∫ ε

−ε

δ(t) E[µ] dt = E[µ]. (3.50)

The coincidence rate is the point-process analog of the autocorrelation used for
continuous-time processes. For large delayst, the two quantities inside the expecta-
tion in Eq. (3.49) become independent, so that

lim
t→∞

G(t) = lim
t→∞

E
[
dN(s)

ds

dN(s + t)
ds

]

= E
[
dN(s)

ds

]
E
[
dN(s + t)

ds

]

= E[µ(s)] E[µ(s + t)]

= E2[µ], (3.51)

whereµ(t) ≡ dN(t)/dt denotes theinstantaneous rateof the point processdN(t).
In general,µ(t) varies in a random fashion, representing the local likelihood of event
generation. For a stationary point process, however, the corresponding rate has statis-
tics that do not vary with time. In this case (which describes the vast majority of point
processes considered in this book), we can eliminate the explicit dependence on the
time t for the marginal statistics. For the mean value, for example, we writeE[µ]
instead ofE[µ(t)]. A further simplification takes place in the special case when the
history of the process has no effect on the instantaneous generation rate, as for the
homogeneous Poisson process described in Sec. 4.1. The expectation itself then be-
comes superfluous, so we eliminate the explicit expectation operator as well;E[µ]
then becomesµ. Returning to the general point-process case, we haveE[µ] = 1/E[τ ],
where we interpret1/∞ as zero.

We can conveniently express several of the count-based measures set forth earlier
in terms of the coincidence rateG(t) (Cox & Isham, 1980; Thurner et al., 1997).
Expressions for the normalized varianceF (T ) (see Prob. 3.10), normalized Haar-
wavelet varianceA(T ), and autocorrelationRZ(k, T ) are given by

F (T ) =
1

E[µ]T

∫ T

−T

{
G(t)− E2[µ]

}
(T − |t|) dt (3.52)

A(T ) =
2

E[µ]T

∫ T

−T

[G(t)−G(2t)] (T − |t|) dt (3.53)

RZ(k, T ) =
∫ T

−T

G(kT + t) (T − |t|) dt, (3.54)

respectively. We can readily invert Eq. (3.52) to yield

G(t) = E[µ] δ(t) + E2[µ] +
E[µ]

2
d2

dT 2

[
TF (T )

]
T=t

. (3.55)
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In practice, determining the coincidence rate from a finite set of data proves im-
possible. The probability that two events exist in the data set with a separation of
preciselyt is zero, for anya priori value oft. Instead, the autocorrelationRZ(k, T )
provides an estimate of the coincidence rate through Eq. (3.54). ForT smaller than
the time scale over whichG(t) varies significantly, we have

RZ(k, T ) =
∫ T

−T

G(kT + t) (T − |t|) dt

≈ G(kT )
∫ T

−T

(T − |t|) dt = G(kT )T 2

G(t) ≈ T−2RZ(t/T, T ). (3.56)

However, obtaining useful resolution in this approximation requires a small value of
T , which, in turn, leads to excessive variance in this estimator ofG(t) for all but the
largest data sets. For this reason, the coincidence rate is rarely used in practice.

3.5.2 Point-process spectrum

As with the sequence of intervals{τk} and the sequence of counts{Zk(T )}, Fourier
transformation of the coincidence rateG(t) yields a spectrumSN (f), this time the
spectrum of the point processdN(t) itself8 (Bartlett, 1963, 1964):

SN (f) =
∫ ∞

−∞
G(t) e−i2πft dt. (3.57)

The inverse relationship also holds

G(t) =
∫ ∞

−∞
SN (f) ei2πft df. (3.58)

Through the properties of the Fourier transform, the delta function associated with
zero delay in Eq. (3.50) becomes the asymptotic value for large frequencies,

lim
f→∞

SN (f) = E[µ] = 1/E[τ ]. (3.59)

The expressionSN (f) /E[µ] therefore provides a normalized form of this spectrum.
The large-delay asymptotic value for the coincidence rate in Eq. (3.51) becomes a
delta function at zero frequency,

lim
ε>0
ε→0

∫ ε

−ε

SN (f) df = lim
ε>0
ε→0

∫ ε

−ε

δ(f) E2[µ] df = E2[µ]. (3.60)

8 We generally compute the point-process spectrumSN (f) for a theoretical construct but make use of the
rate spectrumSλ(f, T ) for actual data (see Sec. 3.4.5); the two spectra thus represent probabilistic and
statistical measures, respectively.
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This delta function also appears inSλ(f, T ) and, with a different prefactor, inSτ (f).
Combining the results obtained earlier yields (Lowen & Teich, 1993a; Lowen,

1996)

F (T ) =
2

π2 E[µ] T

∫ ∞

0+

SN (f) sin2(πfT ) f−2 df (3.61)

A(T ) =
4

π2 E[µ] T

∫ ∞

0+

SN (f) sin4(πfT ) f−2 df, (3.62)

as shown in Probs. 3.11 and 3.12, where the notation0+ indicates that the integral
does not include the delta function at zero frequency. We can make use of Eq. (3.61)
to obtain formulas forF (T ) andA(T ) in the limit of large counting times. Using the
substitutionx ≡ πfT , this equation becomes

F (T ) =
2

π E[µ]

∫ ∞

0+

SN (x/πT ) sin2(x) x−2 dx. (3.63)

In the limit of large counting times, the spectrum approaches its low-frequency limit,
whereupon Eq. (3.63) yields

lim
T→∞

F (T ) =
2

π E[µ]

∫ ∞

0+

lim
f→0

SN (f) sin2(x) x−2 dx

=
2

π E[µ]
lim
f→0

SN (f)
∫ ∞

0+

sin2(x) x−2 dx

= E[τ ] lim
f→0

SN (f). (3.64)

Substituting this limit into Eq. (3.41) gives the same result for the normalized Haar-
wavelet variance,A(T ).

In the opposite limit of small counting times and large frequencies we have

lim
T→0

F (T ) = E[τ ] lim
f→∞

SN (f) = 1, (3.65)

so that plots of the normalized Haar-wavelet variance and normalized point-process
spectrum appear to be mirror images of each other.

In contrast to the coincidence rate, the estimation ofSN (f) from a data set proves
straightforward. A simple method (without averaging) follows from Eq. (3.49) and
the Weiner–Khintchine theorem,

SN (f) =
1
L

E




∣∣∣∣∣
∑

k

e−i2πftk

∣∣∣∣∣

2

 , (3.66)

where{tk} again represents the set of times at which the events occur (rather than
the times between events) andL denotes the duration of the data set. This method
suffers from a major drawback: the times{tk} can take any of a continuous range
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of values, which precludes the use of the fast Fourier-transform algorithm. However,
the rate spectrum set forth in Sec. 3.4.5 proves amenable to this transform, yielding
an efficient and practical method for estimating the spectrum of a point process.

A direct relationship exists between the rate spectrum and the point-process spec-
trum,

Sλ(f, T ) =
∞∑

k=−∞
SN (f + k/T )

sin2(πfT )
(πfT + πk)2

, (3.67)

and the two quantities differ only slightly forT ¿ 1/f (see Prob. 3.13). For the
accurate estimation ofSN (f) from a given sample of a point process with durationL,
we choose an integern such that2n−1/L exceeds the greatest frequency of interest
by a large margin, then setT = L/2n and use the fast Fourier transform to obtain
frequency-domain values from the2n elements of{Zk(T )}.

3.5.3 General-wavelet variance

In Sec. 3.4.3 we made use of the Haar wavelet basis (Haar, 1910) in defining the
normalized wavelet variance, because the form of the Haar wavelet leads to a simple
representation in terms of the counting process{Zk(T )}. Extensions to a general
wavelet basis prove possible, although at the expense of more complex computations.

We again consider the variance of the continuous wavelet transform provided in
Eq. (3.35), and employ its zero-mean property to obtain (Teich et al., 1996)

Var[Cψ,N (a, b)] = E[C2
ψ,N (a, b)]

= E
[∫

s

∫

t

a−1 ψ[(s− b)/a] ψ[(t− b)/a] dN(s) dN(t)
]

= a−1

∫

s

∫

t

ψ[(s− b)/a]ψ[(t− b)/a] G(s− t) ds dt

= a

∫

x

G(ax)
∫

y

ψ(x + y) ψ(y) dy dx (3.68)

= a

∫
G(ax)Cψ,ψ(1, x) dx

=
∫

G(t)Cψ,ψ(1, t/a) dt, (3.69)

whereCψ,ψ(1, x), the continuous wavelet transform of the wavelet function itself,
does not depend on the coincidence rateG(t) (Teich et al., 1996). As with the spectrum
of the point processSN (f), the continuous nature of the times{tk} precludes the use
of fast transform algorithms. Again, approximating the point processdN(t) with the
sequence of counts{Zk(T )} proves useful.

3.5.4 Generalized dimension

Thegeneralized dimensionDq, which is closely related to theRényi entropy(Rényi,
1955, 1970; Theiler, 1990), extends the simple concept of dimension developed in
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Sec. 2.1 and provides a direct measurement of the fractal properties of an object. In
the context of a collection of points, we consider a point processdN(t) over the range
of times0 ≤ t ≤ L and employ the sequence of counts{Zk} to obtain

Dq ≡ 1
q − 1

lim
T→0

E
{

log
[∑

k Zq
k(T )

]}

log(T )
, (3.70)

where the sum extends over all non-empty counts. Note that for a given value ofT ,
k assumes a maximum value ofL/T .9

We can calculate the generalized dimension for any real value ofq. Several values
of q correspond to well-known generalized dimensions (Mandelbrot, 1982, Chap-
ter 39), such as thecapacity dimensionD0 (Pontrjagin & Schnirelmann, 1932) first
discussed in Sec. 2.1.1, which is also called thebox-counting dimension; the infor-
mation dimension limq→1 Dq, which is closely related to the Kolmogorov entropy;
and thecorrelation dimension D2 (Grassberger & Procaccia, 1983). We also con-
siderD−1 andD1/2 (see Prob. 5.5). As reported in Sec. 2.1, the values ofDq for any
object must lie between thetopological dimensionof the object and theEuclidean
dimensionof the space in which the object resides: zero for a point, unity for a line
segment, two for a square, and so on.

Points on a line, as derived from a realization of a point process for example, will
exhibit values ofDq between zero (the dimension of a point) and unity (the dimension
of a line). In general,Dq for a nonfractal object assumes the lower bound given by
the topological dimension of the object, for all indicesq; the quantityDq = D is then
an integer. For a (mono)fractal object, againDq = D for all q, but in contrast to the
nonfractal object,D is not integer; indeed this forms one definition of a fractal (see
Sec. 2.3). Finally, for a multifractal,Dq monotonically decreases with increasingq
(Theiler, 1990).

Wavelet-based methods for estimatingDq also exist (Argoul, Arneodo, Elezgaray
& Grasseau, 1989; Bacry, Muzy & Arneodo, 1993; Arrault & Arneodo, 1997); these
can provide localized values of the generalized dimension.

We make special mention of a fractal dimension that does not belong to theDq fam-
ily of generalized dimensions: theHausdorff–Besicovitch dimensionDHB (Man-
delbrot, 1982, pp. 362–365 and references therein). For many simple cases in which
Dq = D for all q (such as the Cantor set), it turns out thatDHB = D. Calculating this
dimension involves fewer assumptions than determiningDq; the axes of the space
within which the object exists need not be specified, nor need the dimension of that
embedding space. However, determiningDHB proves far more difficult than calcu-
latingDq for analytic examples, and it presents significant difficulties when applied
to data. We therefore deal little with the Hausdorff–Besicovitch dimension in this
book.

The practical use of the generalized dimensionDq requires modification when
applied to real point processes. For any orderly point process, the number of events

9 If we setq = 0 and make the identificationsT = ε andZ(T ) = M(ε), we recover Eq. (2.2).
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N(L) occurring between the origin and a maximum timeL assumes a finite value with
probability one. Therefore, a minimum interevent timeτmin exists; forT < τmin, for
all k eitherZk(T ) = 0 or Zk(T ) = 1. Equation (3.70) then becomes

Dq =
1

q − 1
lim
T→0

E
{

log
[∑

k 1q
]}

log(T )

=
1

q − 1
lim
T→0

E
{
log [N(L)]

}

log(T )

=
E

{
log [N(L)]

}

q − 1
lim
T→0

1
log(T )

= 0, (3.71)

where the sum again does not contain empty counts. Hence, for a finite collection of
points, we obtainDq = 0, a result not indicative of fractal characteristics.

In the context of point processes, we therefore modify the definition of the gen-
eralized dimension to accommodate scaling behavior over a range of counting times
T . We recast Eq. (3.70) in terms of ascaling equation,

∑

k

Zq
k(T ) ∼ T (q−1)Dq , (3.72)

which we can alternatively write in the form of ageneralized-dimension scaling
function:

ηq(T ) ≡
[∑

k

Zq
k(T )/N(L)

] 1
q−1 ≈ TDq , (3.73)

normalized such thatηq(T → 0) = 1. If Eqs. (3.72) and (3.73) hold over a range of
counting timesT , then the resulting exponents on the right-hand sides of these equa-
tions yield the generalized dimensionsDq. This directly reveals the fractal properties
of point-process sample paths. In practice, theDq assume noninteger values only
for the class offractal point processes, and not for the class offractal-rate point
processesthat largely form the focus of this book (see Sec. 5.5 and Prob. 5.5).

In the special case whenq = 0, Eq. (3.73) reduces to

η0(T ) ≡ N(L)∑

k

Z0
k(T )

≈ TD0 , (3.74)

which yieldsD0 = 0 for T < τmin, in accordance with Eq. (3.71), since the sum in
the denominator of Eq. (3.74) is thenN(L).10

10 This power-law dependence over a range of counting times recalls Eq. (1.1) rather than Eq. (2.1).
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3.5.5 Correlation measures for pairs of point processes

Second-order methods prove useful for revealing correlations between sequences of
events, which indicate how information is shared between pairs of point processes.11

Although such methods may not detect all of the subtle forms of interdependence
to which information-theoretic approaches are sensitive (see, for example, Kabanov,
1978; Rieke, Warland, de Ruyter van Steveninck & Bialek, 1997; Dayan & Abbott,
2001), the latter methods suffer from limitations arising from the finite sizes of many
real data sets (see Lowen, Ozaki, Kaplan & Teich, 1998).

We consider two second-order measures, in turn: thenormalized Haar-wavelet
covariance and thecross-spectrum. They exhibit different immunity to nonsta-
tionarities, and different tradeoffs between bias and variance, just as their single-
dimensional counterparts do (see Chapter 12). Both measures prove useful in the
analysis of pairs of point processes.12

• Normalized Haar-wavelet covariance.We define the normalized Haar-wavelet
covarianceA(2)(T )as a generalization of the normalized Haar-wavelet variance
A(T ) defined in Sec. 3.4.3. This measure is insensitive to constant values and
can be rendered insensitive to higher-order polynomial trends by making use of
other wavelets (see Sec. 3.5.3). We initially developed this measure to analyze
correlations between pairs of visual-system spike trains, such as those recorded
from retinal ganglion cells and cells in the lateral geniculate nucleus (Lowen
et al., 2001). At first, we referred toA(2)(T ) as the “normalized wavelet cross-
correlation function,” but we prefer the designation “normalized Haar-wavelet
covariance” since it highlights the relationship betweenA(2)(T ) andA(T ).

The computation of the normalized Haar-wavelet covariance at a particular
counting timeT begins with the division of both point processes into contiguous
counting durationsT . For the first point process, we register the number of
eventsZ1,k that fall within thekth duration for all indicesk. Next we compute
the difference between the count numbers in a given duration,Z1,k, and the
duration that immediately follows,Z1,k+1, for all k, much as when computing
the normalized Haar-wavelet variance. We then carry out the same procedure
for the second point process, beginning with the number of eventsZ2,k that fall
within thekth duration.

11 For example, it may be of interest to study how information is shared between the point processes at the
input and output of a cell. Such a pair of processes collectively forms abivariate point process, a form
of marked point process (see Cox & Isham, 1980, Chapter 5).
12They have been used to reveal unexpected correlations between pairs of visual-system spike trains (Lowen
et al., 2001) and between earthquakes and geoelectrical extreme events (Telesca, Balasco, Colangelo,
Lapenna & Macchiato, 2004), as examples.
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In analogy with the definition of the normalized Haar-wavelet variance, we
define the normalized Haar-wavelet covariance as:

A(2)(T ) ≡ E
{
[Z1,k(T )− Z1,k+1(T )] [Z2,k(T )− Z2,k+1(T )]

}

2
{
E[Z1,k(T )] E[Z2,k(T )]

}1/2
. (3.75)

The normalization imposed in Eq. (3.75) gives rise to three salutary features
for A(2)(T ): (1) it is symmetric in the two point processes; (2) it reduces to
the marginal normalized wavelet varianceA(T ) if the two point processes are
identical — in particular, it assumes a value of unity for all counting timesT
if both point processes comprise the same homogeneous Poisson process, in
analogy with the normalized wavelet varianceA(T ).

• Cross-spectrum.The cross-spectrumS(2)
N (f) is a generalization of the point-

process spectrum for individual spike trains, in much the same way as the
normalized Haar-wavelet covariance derives from the normalized Haar-wavelet
variance (Lowen et al., 2001). Although not often used, this measure has a long
history in the annals of statistics. It appears to have been first introduced by
Jenkins (1961) and its use has been advanced by Brillinger (1986).

A number of definitions for the cross-spectrum have been put forward; we
choose one that is real and symmetric in the two point processes, and reduces
to the single-process version when the two processes coincide. An extension
of Eq. (3.66) leads to the cross-spectrum

S
(2)
N (f) ≡ 1

L
E

[
Re

{∑

k

e−i2πft1,k

∑
m

ei2πft2,m

}]
, (3.76)

where{t1,k}and{t2,k} index the events in point processes 1 and 2, respectively,
occurring in a time of durationL. Equation (3.76) is indeed symmetric, and
reduces to Eq. (3.66) for identical sets{t1,k} and{t2,k}. Although it returns a
real result, the cross-spectrum can assume negative values. For example, two
Poisson processes modulated by sinewaves of identical frequency, but opposite
phase, yieldS(2)

N (f) < 0 near the modulation frequency and its harmonics.

For independent spike trains, we haveS
(2)
N (f) = 0.

As with the single-process spectrum, for the purposes of practical estimation it
proves easier to employ the rate-based version

S
(2)
λ (f, T )≡ 1

L
E

[
Re

{∑

k

Z1,n+k(T )e−i2πkfT
∑
m

Z2,n+m(T )ei2πmfT

}]
,

(3.77)
where{Z1,n(T )} and{Z2,n(T )} describe the counts for the two point pro-
cesses.
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Problems

3.1 Point-process models For each of the following examples, specify whether
an orderly, one-dimensional point process provides a useful model. For the remainder,
describe a modification of the example that would make the model apply.

1. longitude and latitude of trees on Long Island, New York;

2. the times of raindrops hitting a roof;

3. the arrival times of customers at an automatic teller machine;

4. thunderstorm occurrence times in San Diego county during February 1993;

5. the times at which cars are in the Ted Williams tunnel, which passes under
Boston harbor;

6. the set of numbers1/(n + xn), wheren ranges over all positive integers and
{xn} is a set of independent exponentially distributed random variables of unit
mean;

7. the times of maximum daily temperature at the summit of Mount Everest;

8. all human heartbeat times (defined as the time of maximum contraction) from
anyone anywhere on the planet, as transmitted to a central recording station;

9. two random numbers selected uniformly from the unit interval;

10. the sign of the difference between the Dow Jones Industrial Average and the
previous day’s closing price.

3.2 Short-time normalized variance for an orderly point processJustify the ap-
proximationE

[
Z2(T )

] ≈ E[Z(T )] in Eq. (3.34).

3.3 Connection between interval- and count-based statisticsUsing Eqs. (3.11)
and (3.29), show that Eq. (3.30) holds.

3.4 Forward-recurrence-time distribution Explain why Eq. (3.29) holds.

3.5 Skewness and kurtosis valuesAs defined in Eq. (3.4), what values can the
skewness and kurtosis assume? How does prohibiting negative interevent intervals
change this?

3.6 Infinite moments of the Lévy densityShow that the random variable corre-
sponding to the probability density function given by Eq. (3.13) has infinite moments
for all positive integer orders. For which fractional orders do its moments exist?

3.7 Rescaled range and detrended fluctuations for independent intervalsProvide
a heuristic argument showing that the rescaled range statisticU(k) and detrended
fluctuation analysisY (k) indeed vary as

√
k for largek and independent intervals

with finite variance.
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3.8 Interval- and forward-recurrence-time statisticsShow that Eq. (3.11) is valid.

3.9 Interval and point-process spectraShow that the interval-based spectrum
Sτ (f) and the point-process spectrumSN (f) are proportional to each other, at low
frequencies, for interevent intervals withVar[τ ]/E2[τ ] ¿ 1.

3.10 Normalized variance and coincidence rateProve Eq. (3.52).

3.11 Normalized variance and point-process spectrumProve Eq. (3.61).

3.12 Normalized Haar-wavelet variance and point-process spectrumShow that
Eq. (3.62) is valid.

3.13 Connection between rate and point-process spectraProve Eq. (3.67), and
show that the two spectra approach each other for small values of the productfT .
Problem 4.8 explicitly illustrates this connection for the homogeneous Poisson and
gamma renewal point processes.
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